Exam

Name_____

Chapter 10 practice # 2

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Simplify without using a calculator.

A) $-\frac{1}{216}$

B) -216

C) 216

D) $\frac{1}{216}$

1) _____

A) 12

B) 36

C) 3

D) 243

2) _____

Simplify.

3) (3b⁻⁸)(-9b⁻⁵)

A) $\frac{27}{b13}$

B) $\frac{-27}{h13}$

C) 27b¹³

D) -27b¹³

) _____

4) _____

5) _____

4) $\frac{28a^{13}b^{-4}}{7a^6b^{-12}}$

A) $\frac{4b^8}{a^7}$

B) $\frac{4a^7}{b^8}$

C) $\frac{4}{a7b8}$

D) 4a⁷b⁸

 $5) \left(\frac{4x^{-2}y^{2}}{12x^{-4}y^{-1}} \right)^{3}$

A) $\frac{x^6y^9}{3}$

B) $\frac{x^2y^3}{3}$

C) $\frac{x^8y^6}{9}$

D) $\frac{x^6y^9}{27}$

Simplify the expression. Assume that n is a counting number.

6) $\frac{b(6n-5)}{b(4n+4)}$

A) b(2n - 9)

B) b(2n + 9)

C) b(10n + 9)

D) b(10n - 9)

Simplify the expression. Assume that all variables are positive.

7) $x^{-2/7} \times 3/7$

A) $x^{7/6}$

B) x-1/7

C) $x^{1/7}$

D) x6/7

7) _____

6) _____

8) $\frac{(216b^{-7}c^{12})^{2/3}}{(128b^{49}c^4)^{3/7}}$

8) _____

A) $\frac{9b68/7}{2c49/3}$

B) $\frac{9c^{44/7}}{2b^{77/3}}$

C) $\frac{9c^{68/7}}{4b^{49/3}}$

D) $\frac{9b44/7}{2c77/3}$

9)
$$\frac{x^{-1/2}y^{1/8}}{(x^4y^{-5})^{-1/2}}$$

A) $\frac{y^{19/8}}{x^{3/2}}$

- B) $\frac{x^{3/2}}{y^{19/8}}$
- C) $-\frac{x^{3/2}}{y^{19/8}}$
- D) $x^{3/2}y^{19/8}$

Evaluate as specified.

- 10) For $f(x) = 256^x$, find $f(\frac{1}{4})$.
 - A) 4

B) 8

C) 16

D) 64

10)

11) _____

Sketch the graph of the given function.

11)
$$y = \left(\frac{1}{4}\right)^{X}$$

- - A)
 - C)

D)

Find an approximate equation $y = ab^x$ of the exponential curve that contains the given pair of points. Round the values of a and/or b to two decimal places, if necessary.

- 12) (0, 3) and (5, 131)
 - A) $y = 3(218.33)^X$
- B) $y = 3(1.92)^{x}$
- C) $y = 3(8.73)^{X}$
- D) $y = 3(2.13)^X$

- 13) (4, 24.3) and (8, 110.3)
 - A) $y = 5.35(1.46)^{X}$

B) $y = 186.92(0.91)^X$

C) $y = 1.64(1.47)^{X}$

D) $y = 126.00(1.46)^{X}$

Solve the problem.

- 14) The table displays the number of units of a product that were sold during several years on record.
- 14) _____

13) _____

		Annual Sales
	Year	(in units of product)
•	1990	302
	1992	421
	1994	605
	1996	845
	1998	1200
	1999	1439
		•

Let f(t) be the sales of units of the product in the year that is t years since 1990. Find an exponential model $f(t) = ab^{t}$ using the data for 1996 and 1999.

A) $f(t) = 36.02(1.32)^{t}$

B) $f(t) = 297.56(1.19)^{t}$

C) $f(t) = 247.08(0.57)^{t}$

- D) $f(t) = 118.35(1.19)^{t}$
- 15) A storage tank contains a radioactive element with a half-life of 8 years. Let g(t) be the percentage of the element that remains at t years since the element was placed in the tank. Find an equation of g.
- 15) _____

A) $g(t) = 100(0.958)^{t}$

B) $g(t) = 100(0.125)^{t}$

C) $g(t) = 100(0.917)^{t}$

D) $g(t) = 100(0.125)^{0.5t}$

Find all real-number solutions. Round your answer to the second decimal place, if necessary.

16) $5.3b^4 + 95.2 = 285.6$

16)

A) ±8.98

B) 8.98

C) ± 2.45

D) No real-number solution

Use the graph to find the requested value.

17) Find f(1).

18)

C) 0

D) 8

18) Find x where f(x) = -2.

C) -4

D) -2

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Solve the problem.

- 19) A person invests \$6000 at 9% interest compounded annually. Let f(t) represent the value (in 19) _____ thousands of dollars) of the account at t years after the \$6000 is deposited.
 - i) Find an equation for f.
 - ii) What will the value be in 8 years?
 - iii) What is the coefficient a in your model $f(t) = ab^{t}$? What does it mean in terms of the account?

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

A graph of a function of the form $y = ab^{x}$ is given. What can you conclude about the constants a and b? 20)

20) _

- A) a < 0, b > 1

- B) a < 0, 0 < b < 1 C) a > 0, b > 1 D) a > 0, 0 < b < 1

Answer Key

Testname: ČHAPTER 10 TEST 2

- 1) D
- 2) C
- 3) B
- 4) D
- 5) D
- 6) A
- 7) C
- 8) B
- 9) B
- 10) A
- 11) D
- 12) D
- 13) A
- 14) B
- 15) C
- 16) C
- 17) A
- 18) A
- 19) i) $f(t) = 6(1.09)^{t}$
 - ii) \$11,955.38
 - iii) 6; \$6000 was deposited in the account at the beginning of the investment.
- 20) A